Composition of Post classes and normal forms of Boolean functions

نویسندگان

  • Miguel Couceiro
  • Stephan Foldes
  • Erkko Lehtonen
چکیده

The class composition C ◦ K of Boolean clones, being the set of composite functions f(g1, . . . , gn) with f ∈ C, g1, . . . , gn ∈ K, is investigated. This composition C ◦K is either the join C ∨K in the Post Lattice or it is not a clone, and all pairs of clones C,K are classified accordingly. Factorizations of the clone Ω of all Boolean functions as a composition of minimal clones are described and seen to correspond to normal form representations of Boolean functions. The median normal form, arising from the factorization of Ω with the clone SM of self-dual monotone functions as the leftmost composition factor, is compared in terms of complexity with the well-known DNF, CNF, and Zhegalkin (Reed–Muller) polynomial representations, and it is shown to provide a more efficient normal form representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES

Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...

متن کامل

Complexity of the consistency problem for certain Post classes

The complexity of the consistency problem for several important classes of Boolean functions is analyzed. The classes of functions under investigation are those which are closed under function composition or superposition. Several of these so-called Post classes are considered within the context of machine learning with an application to breast cancer diagnosis. The considered Post classes furn...

متن کامل

Monotone, Horn and Quadratic Pseudo-Boolean Functions

A pseudo-Boolean function (pBf) is a mapping from f0; 1gn to the real numbers. It is known that pseudo-Boolean functions have polynomial representations, and it was recently shown that they also have disjunctive normal forms (DNFs). In this paper we relate the DNF syntax of the classes of monotone, quadratic and Horn pBfs to their characteristic inequalities.

متن کامل

Transformations into Normal Forms for Quantified Circuits

We consider the extension of Boolean circuits to quantified Boolean circuits by adding universal and existential quantifier nodes with semantics adopted from quantified Boolean formulas (QBF). The concept allows not only prenex representations of the form ∀x1∃y1...∀xn∃yn c where c is an ordinary Boolean circuit with inputs x1, ..., xn, y1, ..., yn. We also consider more general non-prenex norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006